Journal of Organometallic Chemistry, 124 (1977) C19- C22 © Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

Preliminary Communication

TWO LIGHTLY STABILIZED DECACARBONYLTRIOSMIUM COMPLEXES

MAMORU TACHIKAWA and JOHN R. SHAPLEY*

Department of Chemistry, University of Illinois Urbana, Illinois 61801 (Received October 5th, 1976)

Summary

In cyclooctene solution $H_2Os_3(CO)_{10}$ reacts with ethylene to form $Os_3(CO)_{10}(C_8H_{14})_2$, which can be transformed to $Os_3(CO)_{10}(NCCH_3)_2$. These two labile complexes are useful intermediates for preparation of decacarbonyltriosmium derivatives.

Triosmium cluster derivatives have been prepared from the parent carbonyl $0s_3(CO)_{12}^2$ and from the unsaturated compound $H_20s_3(CO)_{10}$.³⁻⁵ The latter species has allowed observation of the initial stages of hydrocarbon activation by the triosmium unit; hydrogen transfer to an alkyne,^{4a} alkene,^{4b} or diene^{4c} formally generates a decacarbonyltriosmium moiety that could be a reactive intermediate in the various reactions observed. Although the existence of $0s_3(CO)_{10}$ as a free species remains speculative,^{3b} we have prepared "lightly stabilized" derivatives $0s_3(CO)_{10}s_2$ (S = cyclooctene, acetonitrile) that provide the decacarbonyl-triosmium moiety in a general and synthetically useful fashion.

At moderate temperatures H₂Os₃(CO)₁₀ is indefinitely stable in cyclooctene solution. However, under an atmosphere of ethylene (15 psig) the purple solution turns yellow after ca. 12 hr. Removal of a excess cyclooctene (40°C, 0.1 mm) leaves a thermally stable yellow solid, characterized as $Os_3(CO)_{10}(C_8H_{14})_2(\underline{1})$. Compound $\underline{1}$ decomposes rapidly when dissolved in nondonor solvents, but it is stabilized by the presence of excess cyclooctene and can be recrystallized from pentane/cyclooctene. In benzene ¹H NMR signals due to the coordinated cyclooctene ligands at τ 6.55 (vinylic) and τ 7.52, 7.66 (allylic) are not obscured by free cyclooctene signals. The IR spectrum of $\underline{1}$ in cyclooctene shows only terminal carbonyl bands (v_{C0} : 2097w, 2041m, 2027m, 2013s, 1990m, 1981m, 1975m, 1967, 1950 vw); its mass spectrum displays the ions $Os_3(CO)_x(C_8H_{14})^+$ (x = 1 to 10). Brief heating of $\underline{1}$ in toluene with excess cyclooctene forms the known dehydrocyclooctene compound $H_2Os_3(CO)_9C_8H_{12}$.

Addition of acetonitrile to a solution of <u>1</u> followed by evacuation provides $Os_3(CO)_{10}(CH_3CN)_2$ (<u>2</u>). Complex <u>2</u> decomposes less readily than <u>1</u>; it forms moderately stable solutions in dry solvents without added acetonitrile, but it is most readily recrystallized in the presence of excess ligand.^{**} Only terminal carbonyl bonds are observed in the IR spectrum (v_{CO} , C_6H_{12} : 2078w, 2052w, 2022s br, 1993w sh, 1984s, 1964m); no band assignable to v_{CN} is seen. Decomposition to $Os_3(CO)_{12}$ apparently occurs under the conditions necessary to obtain an electron-impact mass spectrum. The ¹H NMR spectrum of a solution of <u>2</u> with excess acetonitrile shows separate sharp signals for the bound and free ligands at 30°C. Significant line broadening without decomposition is observed in the range 50-75°C and preliminary kinetic data ($\Delta H^{\frac{1}{7}} = 29$ kcal/mole, $\Delta S^{\frac{1}{7}} = +28$ cal/deg mole) are consistent with a dissociative exchange process.

Benzene solutions of <u>1</u> (stabilized with cyclooctene) or <u>2</u>

*For $C_{26}H_{28}O_{10}Os_3$, calcd (found): C 29.16 (29.37), 0s 53.27 (53.43). **For C14H6N2O10Os_3, calcd (found): C 18.03 (18.33), H 3.00 (2.98) 0s 61.17 (60.82)

C20

react readily $(25^{\circ}C, < 30 \text{ min})$ with an excess of strong donor ligand to provide $Os_3(CO)_{10}L_2$ (L = PPh₃, PPh₂Me, PPhMe₂, P(OMe)₃, CNMe, CNCH₂Ph) in high isolated yield. The isonitrile derivatives can also be isolated from the mixtures obtained under the conditions used previously for tertiary phosphine derivatives of $Os_3(CO)_{12}$.⁶ However, proceeding from <u>1</u> or <u>2</u>, it is possible to prepare mixed ligand derivatives by sequential addition of different ligands. In this manner compounds of the formula $Os_3(CO)_{10}LL'$ (e.g., L = $P(OMe)_3$, L' = $P(p-tolyl)_3$) have been isolated in up to 80% yield. Several of these derivatives, including $Os_3(CO)_{10}(PMe_2Ph)_2$ and $Os_3(CO)_{10}(P(OMe)_3)_2$, at low temperatures show NMR evidence for two isomers. Clarification of the configurations adopted and study of their dynamic behavior are in progress.

Addition of an excess of various dienes to 1 or 2 produces Os₃(CO)₁₀(diene) complexes in good isolated yields. We have previously prepared complexes of several conjugated dienes from H₂Os₃(CO)₁₀,^{4c} but complexes of 1,5-cyclooctadiene, norbornadiene, and 1,5-hexadiene are readily accessible only from 1 or 2.

Diphenylacetylene reacts smoothly with <u>1</u> or <u>2</u> to form $Os_3(CO)_{10}(PhC=CPh)$.^{4a} Terminal acetylenes also react readily, giving the same compounds obtained from H₂Os₃(CO)₁₀,^{3a, 5a,7} except in higher yield due to the absence of the insertion products HOs₃(CO)₁₀(CH=CHR).

Complexes <u>1</u> and <u>2</u> provide $"Os_3(CO)_{10}"$ for reactions involving cleavage of H-Y bonds. A cyclooctene solution of <u>1</u> under hydrogen (30 psig) is quantitatively converted to $H_2Os_3(CO)_{10}$ after ca. 12 hr. Interaction of <u>1</u> or <u>2</u> with α -olefins provides the vinyl compounds $HOs_3(CO)_{10}(CH=CHR)$.^{3a,4b,5} This is a more general route to such compounds than from $H_2Os_3(CO)_{10}$, since $H_2Os_3(CO)_{10}$ does not readily transfer hydrogen to some simple olefins (e.g., styrene).^{4b} Similarly, products of the formula $HOs_3(CO)_{10}Y$, in which Y acts as a bridging three-electron donor group, have been isolated for HY = HCl, HBr, HOEt, $\rm H_2NPh,$ HSPh, and $\rm C_5H_5N.^8$

We have found complexes $\underline{1}$ and $\underline{2}$ to be especially useful in preparing ¹³CO-labeled compounds in high yield.⁷ However, they also provide the opportunity for systematic and quantitative study of "oxidative" addition to the triosmium unit. Further studies are in progress.

Acknowledgment

This work was supported by National Science Foundation Grant CHE 75-14460. We thank Engelhard Industries for a loan of osmium tetroxide.

References

- Activation of Hydrocarbons by Unsaturated Metal Cluster Complexes. V. For part IV, see ref. 4c.
- (a) A.J. Carty, A.J.P. Domingos, B.F.G. Johnson, and J. Lewis, J. Chem. Soc. Dalton (1973) 2056; (b) A.J. Deeming and M. Underhill, J. Chem. Soc. Dalton (1974) 1415; (c) O. Gambino, R.P. Ferrari, M. Chinone, and G.A. Vaglio, Inorg. Chim. Acta, 12 (1975) 155.
- (a) A.J. Deeming, S. Hasso, and M.Underhill, J. Chem. Soc. Dalton (1975) 1614; (b) A.J. Deeming and S. Hasso, J. Organometal. Chem., 114 (1976) 313.
- (a) M. Tachikawa, J.R. Shapley, and C.G. Pierpont, J. Am, Chem. Soc., 97 (1975) 7172; (b) J.B. Keister and J.R. Shapley, J. Am. Chem. Soc., 98 (1976) 1056; (c) M. Tachikawa, J.R. Shapley, R.C. Haltiwanger, and C.G. Pierpont, J. Am. Chem. Soc., 98 (1976) 4651.
- W.G. Jackson, B.F. Johnson, J.W. Kelland, J.Lewis, and K.T. Schorpp, J. Organometal. Chem. 87 (1975) C27; 88 (1975) C17.
- A.J. Deeming, B.F. Johnson, and J. Lewis, J. Chem. Soc. (A) (1970) 897.
- 7. M.Tachikawa and J.R. Shapley, unpublished results.
- 8. A.J. Deeming and C.C. Yin, J. Chem. Soc. Dalton (1975) 2091.

C22